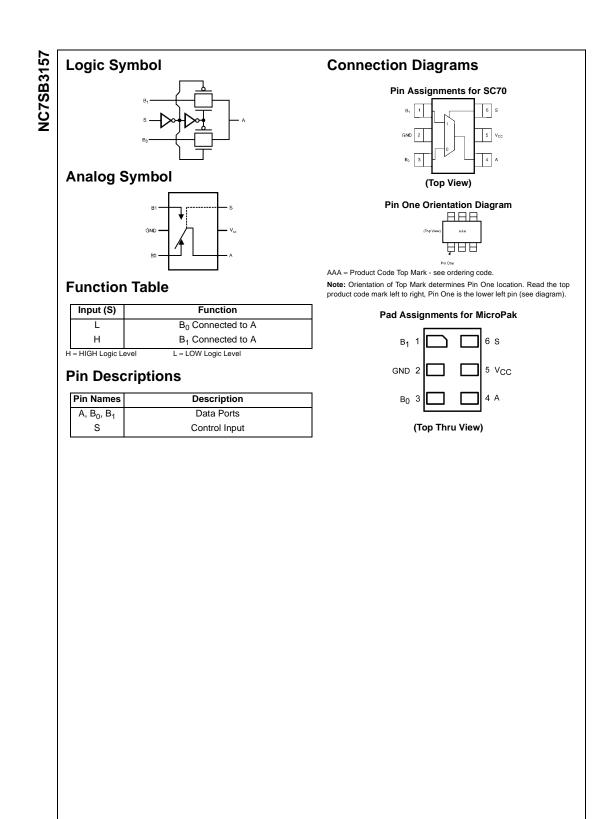
FAIRCHILD

SEMICONDUCTOR TM

NC7SB3157 TinyLogic[™] Low Voltage UHS SPDT Analog Switch or 2:1 Multiplexer/Demultiplexer Bus Switch

General Description

The NC7SB3157 is a high performance, single-pole/double-throw (SPDT) Analog Switch or 2:1 Multiplexer/Demultiplexer Bus Switch from Fairchild's Ultra High Speed Series of TinyLogicTM. The device is fabricated with advanced sub-micron CMOS technology to achieve high speed enable and disable times and low On Resistance. The break before make select circuitry prevents disruption of signals on the B Port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to 5.5V $V_{\rm CC}$ operating range. The control input tolerates voltages up to 5.5V independent of the $V_{\rm CC}$ operating range.


Features

- Useful in both analog and digital applications
- Space saving SC70 6-lead surface mount package
- Ultra small MicroPak[™] leadless package
- I Low On Resistance; < 10 Ω on typ @ 3.3V V_{CC}
- Broad V_{CC} operating range; 1.65V to 5.5V
- Rail-to-rail signal handling
- Power down high impedance control input
- Overvoltage tolerance of control input to 7.0V
- Break before make enable circuitry
- 250 MHz 3dB bandwidth

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SB3157P6X	MAA06A	B7A	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SB3157L6X	MAC06A	BB	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel
		•		
TinyLogic [™] and MicroF	Pak™ are trademar	ks of Fairchild Semico	nductor Corporation	

January 2000 Revised March 2002

Absolute Maximum Ratings(Note 1)

	0
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Voltage (V _{IN}) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
@ (I _{IK}) V _{IN} < 0V	–50 mA
DC Output Current (I _{OUT})	128 mA
DC V _{CC} or Ground Current (I_{CC}/I_{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 3)

Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to V _{CC}
Switch Input Voltage (VIN)	0V to V _{CC}
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
Control Input $V_{CC} = 2.3V - 3.6V$	0 ns/V to 10 ns/V
Control Input $V_{CC} = 4.5V - 5.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	350°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Control input must be held HIGH or LOW, it must not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	٦	Γ _A = +25°	С	$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$		Units	Conditions
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
VIH	HIGH Level	1.65 - 1.95	0.75 V _{CC}			0.75 V _{CC}			
	Input Voltage	2.3 - 5.5	0.7 V _{CC}			0.7 V _{CC}		V	
VIL	LOW Level	1.65 - 1.95			0.25 V _{CC}		0.25 V _{CC}	V	
	Input Voltage	2.3 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v	
I _{IN}	Input Leakage Current	0 - 5.5		±0.05	±0.1		±1	μA	$0 \le V_{IN} \le 5.5V$
I _{OFF}	OFF State Leakage Current	1.65 – 5.5		±0.05	±0.1		±1	μA	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5		3	7		7	Ω	$V_{IN} = 0V, I_{O} = 30 \text{ mA}$
	(Note 4)			5	12		12	Ω	$V_{IN} = 2.4V, I_O = -30 \text{ mA}$
				7	15		15	Ω	$V_{IN} = 4.5V, I_O = -30 \text{ mA}$
		3.0		4	9		9	Ω	$V_{IN} = 0V, I_{O} = 24 \text{ mA}$
				10	20		20	Ω	$V_{IN} = 3V, I_O = -24 \text{ mA}$
		2.3		5	12		12	Ω	V _{IN} = 0V, I _O = 8 mA
				13	30		30	Ω	$V_{IN} = 2.3V, I_O = -8 \text{ mA}$
		1.65		6.5	20		20	Ω	$V_{IN} = 0V, I_{O} = 4 \text{ mA}$
				17	50		50	Ω	$V_{IN} = 1.65V, I_O = -4 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5			1		10	μA	$V_{IN} = V_{CC}$ or GND
	All Channels ON or OFF	5.5			I		10	μА	$I_{OUT} = 0$
	Analog Signal Range	V _{CC}	0		V _{CC}	0	V _{CC}	V	
R _{RANGE}	On Resistance	4.5					25		$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	Over Signal Range	3.0					50	Ω	$I_A = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 4)(Note 8)	2.3					100	52	$I_A = -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		1.65					300		$I_A = -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
ΔR_{ON}	On Resistance Match	4.5		0.15					$I_A = -30 \text{ mA}, V_{Bn} = 3.15$
	Between Channels	3.0		0.2				Ω	$I_A = -24 \text{ mA}, V_{Bn} 2.1$
	(Note 4)(Note 5)(Note 6)	2.3		0.5				22	$I_A = -8 \text{ mA}, V_{Bn} = 1.6$
		1.65		0.5					I _A = -4 mA, V _{Bn} = 1.15

NC7SB3157

NC7SB3157

DC Electrical Characteristics (Continued)

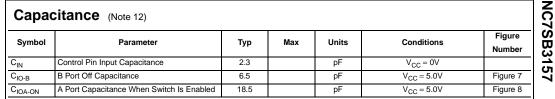
Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$			T _A = -40°	C to +85°C	Units	Conditions
	ranameter	(V)	Min	Тур	Max	Min	Max	Onits	Conditiona
R _{flat}	On Resistance Flatness	5.0		6					$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 4)(Note 5)(Note 7)	3.3		12					$I_A = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		2.5		28				22	$I_A = -8 \text{ mA}, 0 \le V_{Bn} \le V_{CC}$
		1.8		125					$I_A = -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
Note 4: N	leasured by the voltage drop be	tween A and E	3 pins at the	indicated of	urrent thro	ugh the switc	h. On Resista	ance is det	ermined by the lower of the

Note 4: Measured by the voltage drop between A and voltages on the two (A or B Ports).

Note 5: Parameter is characterized but not tested in production.

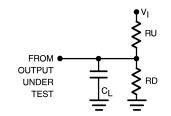
Note 6: $\Delta R_{ON} = R_{ON} \text{ max} - R_{ON} \text{ min measured at identical V}_{CC}$, temperature and voltage levels.

Note 7: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions. Note 8: Guaranteed by Design.


AC Electrical Characteristics

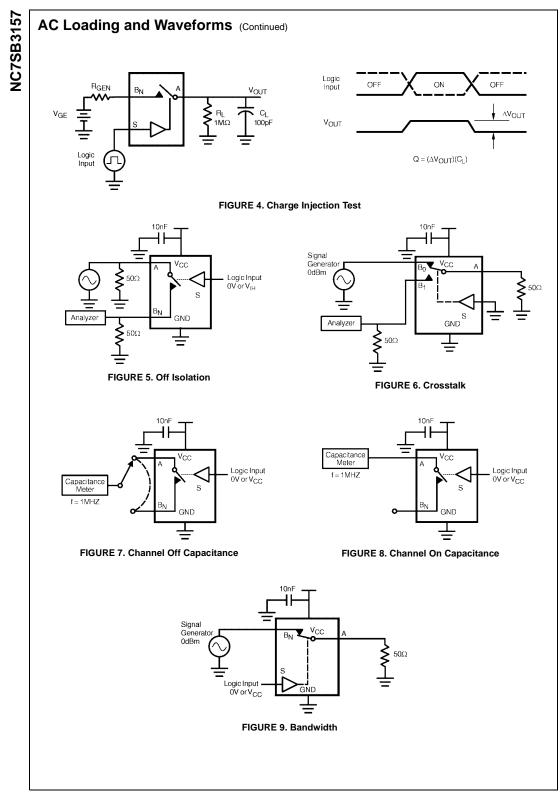
Symbol	Parameter	V _{cc}	T _A = +25°C			$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHL}	Propagation Delay	1.65 – 1.95								
t _{PLH}	Bus to Bus	2.3 – 2.7			1.2		1.2			Figures
	(Note 10)	3.0 - 3.6			0.8		0.8	ns	$V_I = OPEN$	1, 2
		4.5 – 5.5			0.3		0.3			
t _{PZL}	Output Enable Time	1.65 – 1.95	7		23	7	24			
t _{PZH}	Turn on Time	2.3 – 2.7	3.5		13	3.5	14		$V_I = 2 \times V_{CC}$ for t_{PZL}	Figures 1, 2
	(A to B _n)	3.0 - 3.6	2.5		6.9	2.5	7.6	ns	$V_I = 0V$ for t_{PZH}	
		4.5 – 5.5	1.7		5.2	1.7	5.7			
t _{PLZ}	Output Disable Time	1.65 – 1.95	3		12.5	3	13	ns $V_I = 2 \times V_{CC}$ for t_{PHZ} $V_I = 0V$ for t_{PHZ}		Figures 1, 2
t _{PHZ}	Turn Off Time	2.3 – 2.7	2		7	2	7.5		$V_I = 2 \times V_{CC}$ for t_{PLZ}	
	(A Port to B Port)	3.0 - 3.6	1.5		5	1.5	5.3		$V_I = 0V$ for t_{PHZ}	
		4.5 – 5.5	0.8		3.5	0.8	3.8			
t _{B-M}	Break Before Make Time	1.65 – 1.95	0.5			0.5				<u> </u>
	(Note 9)	2.3 – 2.7	0.5			0.5				Figure 2
		3.0 - 3.6	0.5			0.5		ns		Figure 3
		4.5 – 5.5	0.5			0.5				
Q	Charge Injection (Note 9)	5.0		7				- 0	$C_L = 0.1 \text{ nF}, V_{GEN} = 0 \text{V}$	 4
		3.3		3				рС	$R_{GEN} = 0\Omega$	Figure 4
OIRR	Off Isolation (Note 11)	1.65 – 5.5		-57				dB -	$R_L = 50\Omega$	Figure 5
									f = 10MHz	
Xtalk	Crosstalk	1.65 – 5.5		-54				dB	$R_L = 50\Omega$	Figure 6
								uВ	f = 10MHz	i igure o
BW	-3dB Bandwidth	1.65 – 5.5		250				MHz	$R_L = 50\Omega$	Figure 9
THD	Total Harmonic Distortion								$R_L = 600\Omega$	
	(Note 9)	5		.011				%	0.5 V _{P-P}	
									f = 600 Hz to 20 KHz	

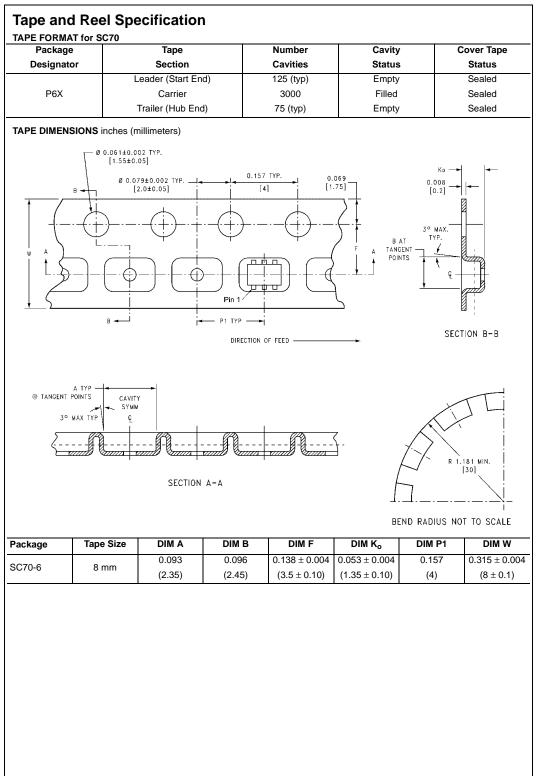
Note 9: Guaranteed by Design.


Note 10: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

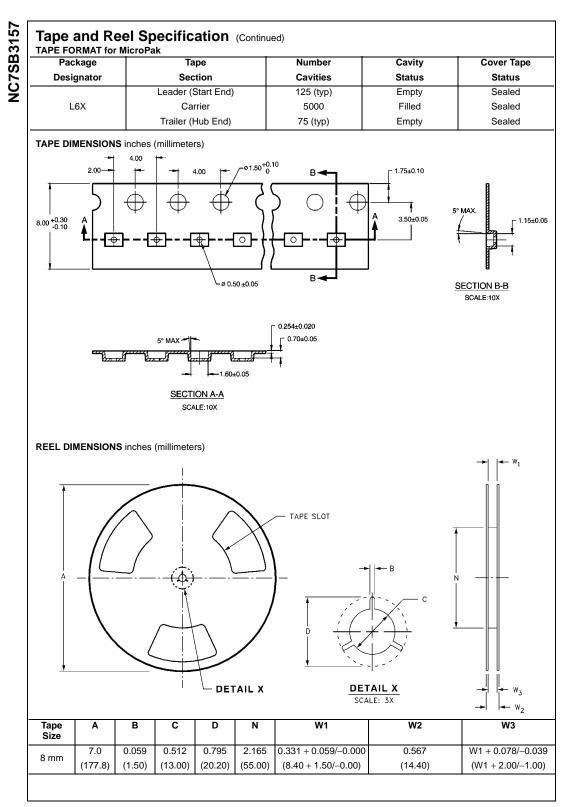
Note 11: Off Isolation = 20 $\log_{10} [V_A / V_{Bn}]$

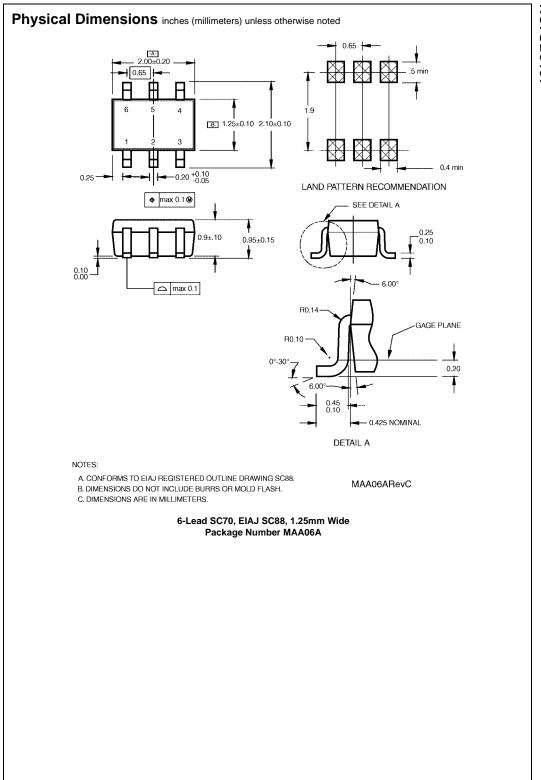
Note 12: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested in production.


AC Loading and Waveforms

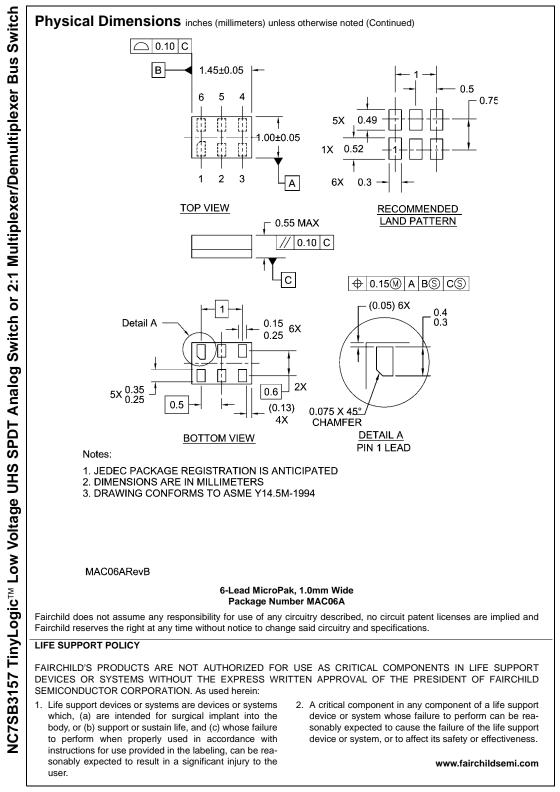


Note: Input driven by 50Ω source terminated in 50Ω Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz; t_W = 500 ns


FIGURE 1. AC Test Circuit



NC7SB3157



www.fairchildsemi.com

8

NC7SB3157

